Énoncés

Exercice 1

On dispose d'une ficelle de longueur 1 m que l'on coupe en d'eux.

Avec l'un des morceaux, on forme un carré. Avec l'autre morceau, on forme un triangle équilatéral.

À quelle distance du début de la ficelle doit-on effectuer la coupe afin que la somme des aires soit minimale ? Arrondir le résultat au cm.

éducmat Page 1 sur 2

Corrigés

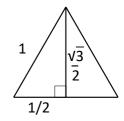
Exercice 1

Soit x la longueur cherchée, en mètres.

x 1-x

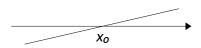
• Le carré de côté $\frac{1-x}{4}$ a pour aire $\frac{(1-x)^2}{16}$

Le triangle équilatéral de côté $\frac{x}{3}$ a pour aire : $\frac{x^2}{9} \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{36}x^2$ La somme des aires est donc $A(x) = \frac{(1-x)^2}{16} + \frac{\sqrt{3}}{36}x^2$



ou encore : $A(x) = \frac{1}{36} ((9 + \sqrt{3})x^2 - 18x + 9)$

• La fonction A est dérivable sur \mathbb{R} et l'on a $A'(x) = \frac{9+\sqrt{3}}{18}x - \frac{1}{2}$ Cette fonction A' est affine et s'annule en $x_0 = \frac{9}{9+\sqrt{3}}$.



• Les variations de A sont :

X	0	X ₀	1
A'(x)	_	0	+
A(x)	7	A(x _o)	7

L'aire totale *A* atteint son minimum pour $x_0 = \frac{9}{9 + \sqrt{3}} \approx 0.84 \text{ m}$

éducmat