01-02 Généralités sur les suites

Generalites sur les suites	
Définitions	
On note $(u_n)_{n\in\mathbb{N}}$ la suite des nombres premiers :	
•	Le quatrième terme est : =
•	Le rang du quatrième terme est
•	La valeur du quatrième terme est
Mode de génération d'une suite (u _n)	
Il existe trois façons principales de définir une suite (u_n) :	
•	par récurrence : on exprime en fonction de
•	explicite : on exprime en fonction de
•	rédigée : par exemple la suite
Croissance d'une suite	
Soit $(u_n)_{n\in\mathbb{N}}$ une suite.	
•	Si, pour tout entier n , on a $u_{n+1} \ge u_n$ alors la suite (u_n) est
•	Si, pour tout entier n , on a $u_{n+1} = u_n$ alors la suite (u_n) est
•	Si, pour tout entier n , on a alors la suite (u_n) est décroissante .
•	Dans tous les autres cas, la suite est
Bornes d'une suite	
Soit $(u_n)_{n\in\mathbb{N}}$ une suite.	
•	S'il existe un nombre M tel que, pour tout entier n , on a $u_n \leq M$ alors la suite (u_n) est
	On dit que <i>M</i> est un de la suite.
•	S'il existe un nombre m tel que, pour tout entier n , on a $u_n \ge m$ alors la suite (u_n) est

Si la suite (u_n) est à la fois majorée et minorée alors on dit qu'elle est

On dit que *m* est un de la suite.

01-02 Application du cours

Application 1

On définit les suite (u_n) et (v_n) telles que, pour tout entier naturel n, on a $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{\sqrt{u_n^2 + 1}} \end{cases}$ et $v_n = \frac{1}{u_n^2}$.

- **1.** Afficher les premiers termes des suites (u_n) et (v_n) à l'aide d'un tableur et émettre une conjecture concernant l'expression explicite de (v_n) .
- 2. Démontrer la conjecture précédente.
- **3.** Exprimer u_n en fonction de n pour tout entier naturel n.

Application 2 La suite de Syracuse compressée

- **1.** a] Calculer les huit premiers termes de la suite quand on prend N = 10.
 - **b**] Que peut-on affirmer concernant la monotonie et les bornes de (u_n) lorsque $u_0 = 10$?
- **2.** a] Rédiger en langage Python la fonction syracuse(u) renvoyant le terme qui suit un terme valant u.
 - **b]** Rédiger la fonction ntermes(N,n) renvoyant la liste des n premiers termes de la suite avec $u_0 = N$. Tester cette fonction pour vérifier la réponse à la question **1.a**].
- **3.** La suite (u_n) est-elle bornée lorsque $u_0 = 27$?